
Tetrahedron Letters 47 (2006) 6389–6392
New synthesis of SKF 89976A
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Abstract—Substituted 4,4-diaryl-3-butenyl-1-amines are synthesized in nearly 34–47% overall yields starting from 3-hydroxypiperi-
dine by the regioselective Baeyer–Villiger lactonization, Grignard addition and elimination sequence. This facile strategy was also
used to synthesize racemic SKF 89976A.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

These substituted and functionalized 4,4-diaryl-3-buten-
yl-1-amines and their analogs are often used as key
intermediates for the synthesis of GABA-uptake inhibi-
tors with potential biological activities of different clas-
ses.1 The compounds with different N-substituted
diarylbutenyl group display anti-convulsant activities
such as compound SKF 89976A, SKF 100300A, SKF
100561 and tiagabine.1,2 Development of a general pro-
cedure for 4,4-diaryl-3-butenyl-1-amine provides an
expedient entry point.2

Basically, the adopted strategies can be summarized in
Lewis acid-catalyzed,3,4 for example, tin(II) triflate,
ytterbium(III) triflate, boron trifluoride etherate, hydro-
gen bromide and palladium(II)-promoted5 cyclopropane
rearrangement and organolithium addition of N-(2-
chloroethyl)benzamide with 1,1-diarylmethanone6

(Fig. 1).

Herein, we want to develop an easy and straightfor-
ward strategy to substituted 4,4-diaryl-3-butenyl-1-
tosylamines 1a–f via key regioselective Baeyer–Villiger
lactonization of 1-tosylpiperidin-3-one with m-chloro-
peroxybenzoic acid.
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2. Results and discussion

For synthesizing compounds 1a–f, 3-hydroxypiperidine
(2) was chosen as the starting material as shown in
Scheme 1.7 Compounds 1a–f were prepared by the
five-step protocol and described as follows: (i) N-tosyl-
ation of compound 2 with p-toluenesulfonyl chloride
and triethylamine at 0 �C for 1 h, (ii) oxidation of the
resulting 1-tosylpiperidin-3-ol with Jones reagent at 0 �C
for 15 min, (iii) specific regioselective Baeyer–Villiger
lactonization8 of 1-tosylpiperidin-3-one (3) at rt for 10 h,
(iv) Grignard addition of 3-tosyl[1,3]oxazepan-7-one
(4) with different arylmagnesium bromide reagents (a,
Ar = C6H5; b, Ar = 2-CH3C6H4; c, Ar = 2-CH3OC6H4;
d, Ar = 3-CH3OC6H4; e, Ar = 4-CH3OC6H4; f,
Ar = 3,4-CH2O2C6H3) at�78 �C for 2 h, (v) dehydration
of the resulting tertiary alcohols with boron trifluoride
etherate at 0 �C for 15 min.9
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While poring over the related literature of regioselective
Baeyer–Villiger ring expansion reaction, we found that
Young and co-workers had developed copper(II) ace-
tate-mediated ring expansion of 4-ketoprolines with m-
chloroperoxybenzoic acid in modest yield.10 The unique
synthetic methodology was similar to our results. How is
the regioselective Beayer–Villiger lactonization initiated?
According to literature reports, the most likely explana-
tion would be that it is controlled by involvement of the
nitrogen lone pair on substituted pyrrolidin-4-one.10

We also found that reaction of 1-tosylpiperidin-4-one
with m-chloroperoxybenzoic acid under the similar con-
ditions was unsuccessful. The starting material was recy-
cled and the ring-expanded product was not obtained.
In comparison with the regioselectivity of Beayer–
Villiger process of 1-tosylpiperidin-4-one, we believe
the amino group can play an important factor to initiate
the ring expansion. During the process, the 4-
tosyl[1,4]oxazepan-2-one framework was not observed.

For the two-step transformation of Grignard addition
and dehydration, substituted compounds 1a–f were ob-
tained in 43–60% yield from compound 4. For the intro-
duction of different 4,4-diaryl group of compounds 1a–f,
the present strategy exhibited a facile methodology in
comparison with the reported literature.3 The total syn-
thetic procedure could be monitored by TLC until the
reaction was complete within a working day. During
separation of compound 1e, 2,2-bis(4-methoxyphenyl)-
1-tosylpyrrolidine (ca. 10%) was the yield.11 Silica gel-
mediated intramolecular cyclization of compound 1e
by the 4-methoxy group was provided. The compounds
with other electron donating groups did not show the
similar phenomena. For the 4,4-dialkyl group, some
complex and inseparated products having different cis
and trans three substituted olefinic isomers were affor-
ded in the synthesis of 4,4-diethylbutenyl-1-amine.

In view of the experimental simplicity, the preparation
of compound 1a was also conducted in a multigram
scale (10 mmol) with 55% overall yield of two steps.
With these results in hand, the next focus was to exam-
ine the synthesis of racemic SKF 89976A (5). Desulfona-
tion of the compound 1a with sodium amalgam yielded
the primary amine. SKF 89976A (5) was afforded by the
alkylation of the resulting amine with compound 612 and
subsequently followed by hydrolysis (Scheme 2).
3. Conclusion

In summary, we present an easy and straightforward
synthesis of compounds 1a–f by the regioselective Bae-
yer–Villiger lactonization, Grignard addition and elimi-
nation sequence. This facile strategy was also used to
synthesize SKF 89976A (5).
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